lnjk Startet 26.Januar.2009 Del på Facebook Startet 26.Januar.2009 Har sett flere tråder der det diskuteres dimensjoner på anker og kjetting og naturlig nok så vil man ikke få noe fasitsvar på dette. Velger derfor å spørre på om noen på forumet kan regne ut følgende: -Ankrer opp på 10m dyp -Slipper ut 40m kjetting med egenvikt 2,3kg/m Vind og strøm tar tak i båten slik at kjettingen strekker seg ut. Spørsmål: Hvor stor kraft i horisontal retning skal til før å løfte den (nest) siste kjettingløkka fra bunn? Hvor stor blir den vertikale kraften? Ta de forutsettinger som må til for å kunne beregne dette f eks helt plan bunn, ankeret er helt fast i bunnen, ingen bølger +++ Hvis det er noen som kan dette så er det kanskje snart å regne ut kreftene ved andre kjettinglengder / dimensjoner (1,4 kg/m) ? Har liksom fått det for meg at når kjettingenden ikke løfter seg fra bunn så det lagt ut nok. Er litt redd for at jeg får problem med både lystbåtwinch og sjødyktighet (kjettingkasse i baugen) for å oppnå dette. Jonn Sitér dette innlegget Link to post
avsluttet Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 (redigert) Mulig jeg driter meg ut nå. egenvekt på kjetting i vann er 1,3kg pr meter. 40 meter kjetting er 52kg. ved å løfte kjettingen såvidt, får du krefter i en rettvinklet trekant som tilsvarer 52 kg på ene katetet og 4x52kg (208kg)på hypotenusen. blir det så enkelt å regne kreftene på siste katetet= 201,4 kg? horisontalt. Og 52kg vertikalt = kjettingen. kanskje..? andre forslag? Foresten er ikke en egenvekt 2,3 kg på kjetting (i luft) veldig lett? redigert: jeg begynner på å tvile at dette blir rett, men det kan jo være kveldens regneoppgave Redigert 26.Januar.2009 av traust (see edit history) Sitér dette innlegget Link to post
roaldbj Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 Vekt til 10 mm kjetting er omlag 2.3 kg/m, se http://www.bechtel-wuppertal.de/572.html. Sitér dette innlegget Link to post
NOR_Gandsfjord Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 En kjetting som er oppspent i begge ender (anker og båt) beskriver en katenær kurve. (forøvrig brukes denne også til å lage svinger på jernbanelinjer, og i en ideell verden svinger på bilvei. Tyskerne er gode på dette, mens den jevne Norske landevei faller sørgelig kort. But I digress som de sier på nynorsk). Her er en kraftkalkulator som er ment for styrkeberegning på antennewire. Kan den brukes? (Venter spent på å få et spark i den matematiske ræva nå ) Sitér dette innlegget S/Y Surprise Link to post
NOR_Gandsfjord Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 MYE Bedre: Her er ANCHORWATCH A Brief Outline of the Theory of Anchoring Så da er det bare å dra fram kalkulator'n. Sitér dette innlegget S/Y Surprise Link to post
avsluttet Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 (redigert) her beregnes jo hvor mye som skal til for å få krefter som virker i en vinkel på ankeret, da blir vel resultatet mye større krefter., eller kanskje ikke Redigert 26.Januar.2009 av traust (see edit history) Sitér dette innlegget Link to post
lnjk Svart 26.Januar.2009 Emnestarter Del på Facebook Svart 26.Januar.2009 Til traust Formulerte meg dårlig. Kjettingen veier 2,3 kg/m. Stålet i kjettingen sier vi har egenvekt på 7,8 i luft Trodde ikke det kunne være så enkelt men ikke noe hadde vært bedre. til roaldbj Takk for flott link på "musikk i båten" tråden. Ja jeg har tatt utgangspunkt i 10mm kjetting. Men hvilke krefter skal til for å strekke den opp? til NOR_Gandsfjord Takker så mye for den siste. Fikk ikke til noe med den førstekalkulatoren. Sliter noe med engelsken da men får prøve først før jeg etterlyser oversettere. Jonn Sitér dette innlegget Link to post
avsluttet Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 ja, jeg misbrukte ordet egenvekt også, men gikk ut fra kg pr meter. tror selve egenvekten er uvesentlig så lenge vi har kg pr meter. Sitér dette innlegget Link to post
Antitin Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 Med fare for å huske feil fra statikkkurset jeg hadde for 20 år siden, så tror jeg dette kan noe forenklet sees på som en parabelkabel. Et kabelstrekk vil henge symmetrisk og hvis du tenker deg at ankeret sitter på laveste punkt så vil kabelen/kjettingen akkurat ha løftet seg fra bakken i dette punktet, og du har kun horisontalt strekk (ingen vertikale krefter som løfter ankeret). Siden hele kjettingen har løftet seg vil du ikke ha noe glede av friksjon mot havbunnen lenger. Ankeret må holde igjen i horisontal retning. Vekten av kjettingen kaller vi q (kg/m). Horisontal avstanden fra ankeret til båte er L (m) og dybden er d (m). Strekket i kjettingen nede ved ankeret da: S= (qxLxL)(2xd) Med 2.3kg/m i luft får du 2.3x(6.8/7.8)=2.0kg/m i vann. Hvis vi forenkler og sier at L=40 (i virkeligheten blir det et par meter mindre pga dybden) så blir i ditt tilfelle horisontalstrekket 160kg. Det er den kraften ankeret ditt må holde. (Et litt mer riktig tall for L vil i dette tilfelle hvis kjettingen er 40m antageligvis være ca. 37m, og da får du 137kg i strekk.) Strekket oppe ved båten kan finnes som den såkalte vektorsummen av horisontalt strekk og vertikalt kraft. Vertikal kraft = qxL=2kg/m x 40m = 80kg Kjettingstrekk ved båt = kvadrat roten av ( 160^2 + 80^2)=179kg I og med at dette er et forenklet oppsett så gjelder regnestykket bare så lenge kjettingen er vesentlig lenger enn det er dypt. Det tar selvfølgelig ikke hensyn til bølger, vind eller andre dynamiske forhold. Du kan enkelt sette inn andre tall for vekt pr meter og lengde. Du vil fort se at kjetting lengden er den viktigste parameteren. Husk også på at ankeret må kunne holde horisontal strekket, hvis ikke så drar du det bare med deg. Friksjonen mot sjøbunnen vil med 40m og såpass lett kjetting være svært liten (kanskje 20-30kg ??) Tar sjansen på at dette er sånn nogenlunde riktig, men skulle det vise seg at det er feil så skal jeg være den første til å legge meg flat. Sitér dette innlegget Link to post
Gunga Din Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 (redigert) (Venter spent på å få et spark i den matematiske ræva nå ) OT-varning husker ikke så mye fra skolen...så att jeg kan ge deg en spark men husker det att i vegbygging så er det klotoiden som gjäller vid overgang fra rakstrekke til kurve radien er oendlig vid ingang.....til en faststelld radie vid utgang eller tilbake mot oendligheten dvs kjör man in i kurven med konstant fart, så skall man dreje ratten med konstant vinkelhastighet. fanns oxo en variant av klotoid som kallades 'roadoid'..der man även tog hänsyn till vinkelhastigheten, drejjningshastigheten på ratten begynner med 0 o går opp til en konstant hastighet er klotoiden en variant av katenær eller kjedjekurve?? husker ikke husker derimot att katenærkurven(eller ett symetriskt segment av den) ' opponer ' er den perfekte formen for en valvbru da får man bare trykkrafter i bågen nok om dette o tilbake ned til ankarkjettingen http://www.sxk.se/tekniska/btf/ankring/art12.htm Redigert 26.Januar.2009 av Gunga Din (see edit history) Sitér dette innlegget S/Y Gunga Din Link to post
Smurph Svart 26.Januar.2009 Del på Facebook Svart 26.Januar.2009 Dette er vel den grundigste tekniske analysen jeg har sett av ankring og dertil hørende krefter. Du finner også en rekke kalkulatorer og excel-ark på disse sidene, hvor du kan leke deg med forskjellige parametre: http://alain.fraysse.free.fr/sail/rode/rode_b.htm Sitér dette innlegget Bundin er bátleysur maður Link to post
bjorngb Svart 27.Januar.2009 Del på Facebook Svart 27.Januar.2009 Støtter NOR_Smurf. Jeg har sett på denne siden fra tid til annen - senest i går og skulle selv anbefale denne. Jeg er i gang med å se på innkjøp av anker og kjetting/tau og denne siden er super :-) Sitér dette innlegget Link to post
roaldbj Svart 27.Januar.2009 Del på Facebook Svart 27.Januar.2009 Jeg jobbet endel i går med siden som NOR_Smurf har lagt ut. Jeg er særlig fasinert av synthetic formulae. Det var lærerikt å legge inn forkjellige verdier for dybde, bunnforhold og vind. Denne siden var ny for meg. Fantastisk hva man finner på nettet. Jeg har nå lagt regnearket inn på PCen og tar det med ombord. Sitér dette innlegget Link to post
Vidar B Svart 27.Januar.2009 Del på Facebook Svart 27.Januar.2009 Slik jeg ser dette, kan det løses enklest med pytagoros sin likning for rettvinklet trekant, og vektor-regning. Formel:c2=a2+b2. C=lengden på kjettingen 40 meter, A=dybden 10 meter. Fra denne likningen regner vi ut horisontal-lengde fra anker og til båt: B=roten av(c2-a2)=38,73meter. Fra vektor-regning, blir vertikal-kraften lik vekten av kjettingen i vann=80 kg, og vektorkraften er 10 meter. Horisontalkraften er 38,73 meter, eller 3,873 ganger så stor som vertikal-kraften= 80x3,873=309,84kg! Resultant-kraften i kjettingen blir da 320 kg. Er ca 30 år siden jeg hadde det på skolen, og hukommelsen er jo litt "rusten" ! Noen bedre? Sitér dette innlegget Link to post
Recommended Posts
Delta i diskusjonen
Du kan skrive innlegget nå, det vil bli postet etter at du har registrert deg. Logg inn hvis du allerede er registrert.